用户不存在不在线提示您:看后求收藏(炎黄中文www.yhzw.org),接着再看更方便。
洞、中子星等天体合并产生的引力波。
干涉臂长度
- LISA:由三个相隔250万公里的航天器组成等边三角形,臂长达到百万公里级。
- 地面引力波探测器:如LIGO的干涉臂长为4公里,处女座干涉臂长3公里,臂长相对较短。
探测目标
- LISA:能够观测到质量更大、距离更远、演化更慢的引力波源系统,可用于研究宇宙早期超大质量黑洞的形成和演化、星系的合并等。
- 地面引力波探测器:侧重于探测恒星级天体的剧烈碰撞和合并事件,如双黑洞合并、双中子星合并等,研究这些事件中天体的性质和物理过程。
观测环境
- LISA:位于太空中,不受地球大气、地震等地面环境因素的干扰,能更稳定地进行观测,但面临太空辐射、微流星体撞击等风险。
- 地面引力波探测器:需要采取复杂的隔振、真空等技术手段来减少地面环境干扰,如建设在偏远地区、采用悬挂式干涉臂等。
技术难度
- LISA:涉及到高精度的航天器控制、激光远距离传输和干涉测量等技术,工程技术难度高。
- 地面引力波探测器:需要解决的主要技术难题是在地面环境下实现超高精度的激光干涉测量和对微弱信号的探测。
LISA的三个航天器主要通过以下方式保持相互间的精准距离:
轨道设计与控制
- 特殊轨道布局:三个航天器位于地球绕太阳的公转轨道上,彼此相距约250万公里,形成等边三角形。这种布局有助于减少地球引力对测量结果的干扰。
- 轨道调整与维持:通过航天器上的推进系统,根据地面控制中心的指令,实时调整航天器的轨道参数,使其保持在预定轨道上,确保相互间的距离稳定。
激光干涉测量与反馈控制
- 激光测距与监测:利用激光干涉技术,测量三个航天器之间的绝对距离和微小距离变化,可测量到厘米级的绝对距离和皮米级的小时尺度波动。
- 实时反馈与调整:根据激光干涉测量得到的距离信息,通过航天器上的微推进器等装置,对航天器的位置和姿态进行微调,保持相互间的精准距离。
航天器设计与技术保障
- 高精度仪器设备:配备高精度的望远镜、反射镜、传感器等设备,确保激光发射、接收和测量的